•    Leonardo Pisano Bigollo – aka Fibonacci – laid the groundwork for our modern-day mathematical understanding of certain shapes in n...

    Leonardo Pisano Bigollo – aka Fibonacci – laid the groundwork for our modern-day mathematical understanding of certain shapes in nature, including Nautilus shells.

Mathematics:  The Language of Nature

As far as we know, mathematics is as old as civilization itself.  In a sense, to do mathematics is at the heart of what it means to be human.  Here at Emory & Henry we try to put the human into mathematics.  Small class sizes, committed available professors, and great camaraderie among the students who work, study and play together produce a great environment for learning this sometime difficult but important and always gratifying subject.

Degrees

  • Bachelor of Arts, Education- Interdisciplinary Mathematics, Elementary and Middle School PK-6,6-8

    To offer an interdisciplinary program of study with a broad foundation in mathematics and to enable students to meet Virginia requirements for licensure to teach in the elementary and middle schools.

  • Bachelor of Arts, Interdisciplinary Mathematics and Teacher Preparation- PK-6,6-8

    To offer an interdisciplinary program of study with a broad foundation in mathematics.

  • Bachelor of Arts, Mathematics

    To offer a broad foundation in theoretical and applied mathematics. To provide the necessary preparation for teaching, graduate study, or related work in a number of vocational fields.

  • Bachelor of Science, Mathematics

    To offer a broad foundation in theoretical and applied mathematics. To provide the necessary preparation for teaching, graduate study, or related work in a number of vocational fields.

  • Minor, Mathematics

    A student may minor in mathematics by completing Mathematics 151, 152, 201, and 253, and two additional courses at or above the 300 level, not including 311, 312, 420, 460, 470, or 480.

  • Bachelor of Arts, Mathematics- Teacher Preparation- Secondary 6-12

    To enable students to meet Virginia requirements for licensure to teach mathematics.

  • Bachelor of Science, Mathematics- Teacher Preparation- Secondary 6-12

    To enable students to meet Virginia requirements for licensure to teach mathematics.

Student Research

  • <h4 class="lw_blurbs_title">Relationships Between Climate Change and Salamander Lengths</h4><div class="lw_blurbs_body"><p><picture class="lw_image lw_image403 lw_align_left"><source media="(max-width: 500px)" type="image/webp" srcset="/live/image/scale/2x/gid/2/width/500/height/667/403_4ECB12B6-02B3-49A7-A753-23E98E51C598_2.rev.1501684939.webp 2x, /live/image/scale/3x/gid/2/width/500/height/667/403_4ECB12B6-02B3-49A7-A753-23E98E51C598_2.rev.1501684939.webp 3x" data-origin="responsive"/><source media="(max-width: 500px)" type="image/jpeg" srcset="/live/image/scale/2x/gid/2/width/500/height/667/403_4ECB12B6-02B3-49A7-A753-23E98E51C598_2.rev.1501684939.jpg 2x, /live/image/scale/3x/gid/2/width/500/height/667/403_4ECB12B6-02B3-49A7-A753-23E98E51C598_2.rev.1501684939.jpg 3x" data-origin="responsive"/><source media="(min-width: 501px)" type="image/webp" srcset="/live/image/scale/2x/gid/2/width/611/height/815/403_4ECB12B6-02B3-49A7-A753-23E98E51C598_2.rev.1501684939.webp 2x, /live/image/scale/3x/gid/2/width/611/height/815/403_4ECB12B6-02B3-49A7-A753-23E98E51C598_2.rev.1501684939.webp 3x" data-origin="responsive"/><source media="(min-width: 501px)" type="image/jpeg" srcset="/live/image/scale/2x/gid/2/width/611/height/815/403_4ECB12B6-02B3-49A7-A753-23E98E51C598_2.rev.1501684939.jpg 2x, /live/image/scale/3x/gid/2/width/611/height/815/403_4ECB12B6-02B3-49A7-A753-23E98E51C598_2.rev.1501684939.jpg 3x" data-origin="responsive"/><img width="611" height="815" alt="Zane Moran '19, pictured left, out conducting research." data-caption="Zane Moran ’19, pictured right, out conducting research." src="/live/image/gid/2/width/611/height/815/403_4ECB12B6-02B3-49A7-A753-23E98E51C598_2.rev.1501684939.jpg" title="4ECB12B6-02B3-49A7-A753-23E98E51C598 2" srcset="/live/image/scale/2x/gid/2/width/611/height/815/403_4ECB12B6-02B3-49A7-A753-23E98E51C598_2.rev.1501684939.jpg 2x, /live/image/scale/3x/gid/2/width/611/height/815/403_4ECB12B6-02B3-49A7-A753-23E98E51C598_2.rev.1501684939.jpg 3x" data-max-w="2400" data-max-h="3200" loading="lazy" data-optimized="true"/></picture></p><p> Mathematics and Economics double major, <strong>Zane Moran ’19</strong>, is exploring the relationship between climate change and salamander length, hoping that any relationship that can be observed through the research may help serve as future indicators of climate change. </p></div>
  • <h4 class="lw_blurbs_title">Topology as a Means of Inferential Analysis</h4><div class="lw_blurbs_body"><p><picture class="lw_image lw_image2146 lw_align_left"><source media="(max-width: 500px)" type="image/webp" srcset="/live/image/scale/2x/gid/28/width/500/height/223/2146_Persistent_Homology.rev.1516065089.webp 2x, /live/image/scale/3x/gid/28/width/500/height/223/2146_Persistent_Homology.rev.1516065089.webp 3x" data-origin="responsive"/><source media="(max-width: 500px)" type="image/jpeg" srcset="/live/image/scale/2x/gid/28/width/500/height/223/2146_Persistent_Homology.rev.1516065089.jpg 2x, /live/image/scale/3x/gid/28/width/500/height/223/2146_Persistent_Homology.rev.1516065089.jpg 3x" data-origin="responsive"/><source media="(min-width: 501px)" type="image/webp" srcset="/live/image/scale/2x/gid/28/width/611/height/272/2146_Persistent_Homology.rev.1516065089.webp 2x, /live/image/scale/3x/gid/28/width/611/height/272/2146_Persistent_Homology.rev.1516065089.webp 3x" data-origin="responsive"/><source media="(min-width: 501px)" type="image/jpeg" srcset="/live/image/scale/2x/gid/28/width/611/height/272/2146_Persistent_Homology.rev.1516065089.jpg 2x, /live/image/scale/3x/gid/28/width/611/height/272/2146_Persistent_Homology.rev.1516065089.jpg 3x" data-origin="responsive"/><img width="611" height="272" alt="" data-caption="<strong>Josh Hess, '18 </strong>is using the abstract mathematical techniques of topology to analyze large medical data sets." src="/live/image/gid/28/width/611/height/272/2146_Persistent_Homology.rev.1516065089.jpg" title="Persistent Homology" srcset="/live/image/scale/2x/gid/28/width/611/height/272/2146_Persistent_Homology.rev.1516065089.jpg 2x, /live/image/scale/3x/gid/28/width/611/height/272/2146_Persistent_Homology.rev.1516065089.jpg 3x" data-max-w="2025" data-max-h="900" loading="lazy" data-optimized="true"/></picture></p><p>  </p><p><strong>Josh Hess, ’18 </strong>is using the abstract mathematical techniques of topology to analyze large medical data sets</p></div>
  • <h4 class="lw_blurbs_title">How Long is the Devil’s Staircase?</h4><div class="lw_blurbs_body"><p> Mathematics minor <strong>Jane Groseclose</strong> attempted to find the lengths of particular sets of Devil’s Staircases, mathematical functions that increase in a non-continuous manner.</p></div>